Integral de $$$\frac{\sin{\left(5 x - 3 \right)}}{t}$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$\frac{\sin{\left(5 x - 3 \right)}}{t}$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sin{\left(5 x - 3 \right)}}{t}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{t}$$$ y $$$f{\left(x \right)} = \sin{\left(5 x - 3 \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x}}} = {\color{red}{\frac{\int{\sin{\left(5 x - 3 \right)} d x}}{t}}}$$

Sea $$$u=5 x - 3$$$.

Entonces $$$du=\left(5 x - 3\right)^{\prime }dx = 5 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{5}$$$.

Por lo tanto,

$$\frac{{\color{red}{\int{\sin{\left(5 x - 3 \right)} d x}}}}{t} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{t}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{t} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{t}$$

La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{5 t} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{5 t}$$

Recordemos que $$$u=5 x - 3$$$:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{5 t} = - \frac{\cos{\left({\color{red}{\left(5 x - 3\right)}} \right)}}{5 t}$$

Por lo tanto,

$$\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x} = - \frac{\cos{\left(5 x - 3 \right)}}{5 t}$$

Añade la constante de integración:

$$\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x} = - \frac{\cos{\left(5 x - 3 \right)}}{5 t}+C$$

Respuesta

$$$\int \frac{\sin{\left(5 x - 3 \right)}}{t}\, dx = - \frac{\cos{\left(5 x - 3 \right)}}{5 t} + C$$$A


Please try a new game Rotatly