Integral de $$$\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}\, dx$$$.

Solución

Sea $$$u=44 x$$$.

Entonces $$$du=\left(44 x\right)^{\prime }dx = 44 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{44}$$$.

La integral se convierte en

$${\color{red}{\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}}{44} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{44}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}}{44} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)} d u}}{44}\right)}}$$

Sea $$$v=\cos{\left(u \right)}$$$.

Entonces $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (los pasos pueden verse »), y obtenemos que $$$\sin{\left(u \right)} du = - dv$$$.

La integral se convierte en

$$\frac{{\color{red}{\int{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)} d u}}}}{44} = \frac{{\color{red}{\int{\left(- \sin{\left(v \right)}\right)d v}}}}{44}$$

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=-1$$$ y $$$f{\left(v \right)} = \sin{\left(v \right)}$$$:

$$\frac{{\color{red}{\int{\left(- \sin{\left(v \right)}\right)d v}}}}{44} = \frac{{\color{red}{\left(- \int{\sin{\left(v \right)} d v}\right)}}}{44}$$

La integral del seno es $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:

$$- \frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{44} = - \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{44}$$

Recordemos que $$$v=\cos{\left(u \right)}$$$:

$$\frac{\cos{\left({\color{red}{v}} \right)}}{44} = \frac{\cos{\left({\color{red}{\cos{\left(u \right)}}} \right)}}{44}$$

Recordemos que $$$u=44 x$$$:

$$\frac{\cos{\left(\cos{\left({\color{red}{u}} \right)} \right)}}{44} = \frac{\cos{\left(\cos{\left({\color{red}{\left(44 x\right)}} \right)} \right)}}{44}$$

Por lo tanto,

$$\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x} = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44}$$

Añade la constante de integración:

$$\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x} = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44}+C$$

Respuesta

$$$\int \sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}\, dx = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44} + C$$$A


Please try a new game Rotatly