Integral de $$$\frac{\sec{\left(x \right)}}{2}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\sec{\left(x \right)}}{2}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \sec{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sec{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\sec{\left(x \right)} d x}}{2}\right)}}$$
Reescribe la secante como $$$\sec\left(x\right)=\frac{1}{\cos\left(x\right)}$$$:
$$\frac{{\color{red}{\int{\sec{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{2}$$
Expresa el coseno en función del seno utilizando la fórmula $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ y luego expresa el seno utilizando la fórmula del ángulo doble $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2}$$
Multiplica el numerador y el denominador por $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2}$$
Sea $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.
Entonces $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.
Por lo tanto,
$$\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2} = \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recordemos que $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2}$$
Por lo tanto,
$$\int{\frac{\sec{\left(x \right)}}{2} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2}$$
Añade la constante de integración:
$$\int{\frac{\sec{\left(x \right)}}{2} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C$$
Respuesta
$$$\int \frac{\sec{\left(x \right)}}{2}\, dx = \frac{\ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)}{2} + C$$$A