Integral de $$$\tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \tan{\left(\theta \right)} \sec{\left(\theta \right)}\, d\theta$$$.
Solución
La integral de $$$\tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$ es $$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}$$$:
$${\color{red}{\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}}} = {\color{red}{\sec{\left(\theta \right)}}}$$
Por lo tanto,
$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}$$
Añade la constante de integración:
$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}+C$$
Respuesta
$$$\int \tan{\left(\theta \right)} \sec{\left(\theta \right)}\, d\theta = \sec{\left(\theta \right)} + C$$$A