Integral de $$$\tan{\left(4 x \right)} \sec{\left(4 x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \tan{\left(4 x \right)} \sec{\left(4 x \right)}\, dx$$$.
Solución
Sea $$$u=4 x$$$.
Entonces $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{4}$$$.
Por lo tanto,
$${\color{red}{\int{\tan{\left(4 x \right)} \sec{\left(4 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{4} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(u \right)} = \tan{\left(u \right)} \sec{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} \sec{\left(u \right)} d u}}{4}\right)}}$$
La integral de $$$\tan{\left(u \right)} \sec{\left(u \right)}$$$ es $$$\int{\tan{\left(u \right)} \sec{\left(u \right)} d u} = \sec{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\tan{\left(u \right)} \sec{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\sec{\left(u \right)}}}}{4}$$
Recordemos que $$$u=4 x$$$:
$$\frac{\sec{\left({\color{red}{u}} \right)}}{4} = \frac{\sec{\left({\color{red}{\left(4 x\right)}} \right)}}{4}$$
Por lo tanto,
$$\int{\tan{\left(4 x \right)} \sec{\left(4 x \right)} d x} = \frac{\sec{\left(4 x \right)}}{4}$$
Añade la constante de integración:
$$\int{\tan{\left(4 x \right)} \sec{\left(4 x \right)} d x} = \frac{\sec{\left(4 x \right)}}{4}+C$$
Respuesta
$$$\int \tan{\left(4 x \right)} \sec{\left(4 x \right)}\, dx = \frac{\sec{\left(4 x \right)}}{4} + C$$$A