Integral de $$$\ln\left(2 n\right)$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \ln\left(2 n\right)\, dn$$$.
Solución
Sea $$$u=2 n$$$.
Entonces $$$du=\left(2 n\right)^{\prime }dn = 2 dn$$$ (los pasos pueden verse »), y obtenemos que $$$dn = \frac{du}{2}$$$.
Entonces,
$${\color{red}{\int{\ln{\left(2 n \right)} d n}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$
Para la integral $$$\int{\ln{\left(u \right)} d u}$$$, utiliza la integración por partes $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Sean $$$\operatorname{g}=\ln{\left(u \right)}$$$ y $$$\operatorname{dv}=du$$$.
Entonces $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d u}=u$$$ (los pasos pueden verse »).
Por lo tanto,
$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$
Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$$\frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{u}}}{2}$$
Recordemos que $$$u=2 n$$$:
$$- \frac{{\color{red}{u}}}{2} + \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = - \frac{{\color{red}{\left(2 n\right)}}}{2} + \frac{{\color{red}{\left(2 n\right)}} \ln{\left({\color{red}{\left(2 n\right)}} \right)}}{2}$$
Por lo tanto,
$$\int{\ln{\left(2 n \right)} d n} = n \ln{\left(2 n \right)} - n$$
Simplificar:
$$\int{\ln{\left(2 n \right)} d n} = n \left(\ln{\left(n \right)} - 1 + \ln{\left(2 \right)}\right)$$
Añade la constante de integración:
$$\int{\ln{\left(2 n \right)} d n} = n \left(\ln{\left(n \right)} - 1 + \ln{\left(2 \right)}\right)+C$$
Respuesta
$$$\int \ln\left(2 n\right)\, dn = n \left(\ln\left(n\right) - 1 + \ln\left(2\right)\right) + C$$$A