Integral de $$$\ln\left(\frac{1}{1 - x}\right)$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(- \ln\left(1 - x\right)\right)\, dx$$$.
Solución
La entrada se reescribe: $$$\int{\ln{\left(\frac{1}{1 - x} \right)} d x}=\int{\left(- \ln{\left(1 - x \right)}\right)d x}$$$.
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=-1$$$ y $$$f{\left(x \right)} = \ln{\left(1 - x \right)}$$$:
$${\color{red}{\int{\left(- \ln{\left(1 - x \right)}\right)d x}}} = {\color{red}{\left(- \int{\ln{\left(1 - x \right)} d x}\right)}}$$
Sea $$$u=1 - x$$$.
Entonces $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - du$$$.
La integral se convierte en
$$- {\color{red}{\int{\ln{\left(1 - x \right)} d x}}} = - {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$$- {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = - {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$
Para la integral $$$\int{\ln{\left(u \right)} d u}$$$, utiliza la integración por partes $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Sean $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ y $$$\operatorname{dv}=du$$$.
Entonces $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d u}=u$$$ (los pasos pueden verse »).
Por lo tanto,
$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$
Recordemos que $$$u=1 - x$$$:
$$- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - {\color{red}{\left(1 - x\right)}} + {\color{red}{\left(1 - x\right)}} \ln{\left({\color{red}{\left(1 - x\right)}} \right)}$$
Por lo tanto,
$$\int{\left(- \ln{\left(1 - x \right)}\right)d x} = x + \left(1 - x\right) \ln{\left(1 - x \right)} - 1$$
Simplificar:
$$\int{\left(- \ln{\left(1 - x \right)}\right)d x} = x - \left(x - 1\right) \ln{\left(1 - x \right)} - 1$$
Añadir la constante de integración (y eliminar la constante de la expresión):
$$\int{\left(- \ln{\left(1 - x \right)}\right)d x} = x - \left(x - 1\right) \ln{\left(1 - x \right)}+C$$
Respuesta
$$$\int \left(- \ln\left(1 - x\right)\right)\, dx = \left(x - \left(x - 1\right) \ln\left(1 - x\right)\right) + C$$$A