Integral de $$$x^{\frac{3}{2}} \ln\left(x\right)$$$

La calculadora encontrará la integral/antiderivada de $$$x^{\frac{3}{2}} \ln\left(x\right)$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int x^{\frac{3}{2}} \ln\left(x\right)\, dx$$$.

Solución

Para la integral $$$\int{x^{\frac{3}{2}} \ln{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=\ln{\left(x \right)}$$$ y $$$\operatorname{dv}=x^{\frac{3}{2}} dx$$$.

Entonces $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{x^{\frac{3}{2}} d x}=\frac{2 x^{\frac{5}{2}}}{5}$$$ (los pasos pueden verse »).

Por lo tanto,

$${\color{red}{\int{x^{\frac{3}{2}} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{2 x^{\frac{5}{2}}}{5}-\int{\frac{2 x^{\frac{5}{2}}}{5} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - \int{\frac{2 x^{\frac{3}{2}}}{5} d x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{2}{5}$$$ y $$$f{\left(x \right)} = x^{\frac{3}{2}}$$$:

$$\frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - {\color{red}{\int{\frac{2 x^{\frac{3}{2}}}{5} d x}}} = \frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - {\color{red}{\left(\frac{2 \int{x^{\frac{3}{2}} d x}}{5}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{3}{2}$$$:

$$\frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - \frac{2 {\color{red}{\int{x^{\frac{3}{2}} d x}}}}{5}=\frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - \frac{2 {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}}{5}=\frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - \frac{2 {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}}{5}$$

Por lo tanto,

$$\int{x^{\frac{3}{2}} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{5}{2}} \ln{\left(x \right)}}{5} - \frac{4 x^{\frac{5}{2}}}{25}$$

Simplificar:

$$\int{x^{\frac{3}{2}} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{5}{2}} \left(5 \ln{\left(x \right)} - 2\right)}{25}$$

Añade la constante de integración:

$$\int{x^{\frac{3}{2}} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{5}{2}} \left(5 \ln{\left(x \right)} - 2\right)}{25}+C$$

Respuesta

$$$\int x^{\frac{3}{2}} \ln\left(x\right)\, dx = \frac{2 x^{\frac{5}{2}} \left(5 \ln\left(x\right) - 2\right)}{25} + C$$$A


Please try a new game Rotatly