Integral de $$$\frac{r}{a e^{2}}$$$ con respecto a $$$a$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{r}{a e^{2}}\, da$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ con $$$c=\frac{r}{e^{2}}$$$ y $$$f{\left(a \right)} = \frac{1}{a}$$$:
$${\color{red}{\int{\frac{r}{a e^{2}} d a}}} = {\color{red}{\frac{r \int{\frac{1}{a} d a}}{e^{2}}}}$$
La integral de $$$\frac{1}{a}$$$ es $$$\int{\frac{1}{a} d a} = \ln{\left(\left|{a}\right| \right)}$$$:
$$\frac{r {\color{red}{\int{\frac{1}{a} d a}}}}{e^{2}} = \frac{r {\color{red}{\ln{\left(\left|{a}\right| \right)}}}}{e^{2}}$$
Por lo tanto,
$$\int{\frac{r}{a e^{2}} d a} = \frac{r \ln{\left(\left|{a}\right| \right)}}{e^{2}}$$
Añade la constante de integración:
$$\int{\frac{r}{a e^{2}} d a} = \frac{r \ln{\left(\left|{a}\right| \right)}}{e^{2}}+C$$
Respuesta
$$$\int \frac{r}{a e^{2}}\, da = \frac{r \ln\left(\left|{a}\right|\right)}{e^{2}} + C$$$A