Integral de $$$\frac{1}{4 \cos^{2}{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{4 \cos^{2}{\left(x \right)}}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}{4}\right)}}$$
Reescribe el integrando en términos de la secante:
$$\frac{{\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}}}{4} = \frac{{\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}}{4}$$
La integral de $$$\sec^{2}{\left(x \right)}$$$ es $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}}{4} = \frac{{\color{red}{\tan{\left(x \right)}}}}{4}$$
Por lo tanto,
$$\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x} = \frac{\tan{\left(x \right)}}{4}$$
Añade la constante de integración:
$$\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x} = \frac{\tan{\left(x \right)}}{4}+C$$
Respuesta
$$$\int \frac{1}{4 \cos^{2}{\left(x \right)}}\, dx = \frac{\tan{\left(x \right)}}{4} + C$$$A