Integral de $$$\cos{\left(\omega t^{2} \right)}$$$ con respecto a $$$t$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \cos{\left(\omega t^{2} \right)}\, dt$$$.
Solución
Sea $$$u=\sqrt{\omega} t$$$.
Entonces $$$du=\left(\sqrt{\omega} t\right)^{\prime }dt = \sqrt{\omega} dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = \frac{du}{\sqrt{\omega}}$$$.
Por lo tanto,
$${\color{red}{\int{\cos{\left(\omega t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u^{2} \right)}}{\sqrt{\omega}} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{\sqrt{\omega}}$$$ y $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u^{2} \right)}}{\sqrt{\omega}} d u}}} = {\color{red}{\frac{\int{\cos{\left(u^{2} \right)} d u}}{\sqrt{\omega}}}}$$
Esta integral (Integral del coseno de Fresnel) no tiene una forma cerrada:
$$\frac{{\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{\sqrt{\omega}} = \frac{{\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{\sqrt{\omega}}$$
Recordemos que $$$u=\sqrt{\omega} t$$$:
$$\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{\omega} t}}}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}$$
Por lo tanto,
$$\int{\cos{\left(\omega t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}$$
Añade la constante de integración:
$$\int{\cos{\left(\omega t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}+C$$
Respuesta
$$$\int \cos{\left(\omega t^{2} \right)}\, dt = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}} + C$$$A