Integral de $$$b^{2 x}$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int b^{2 x}\, dx$$$.
Solución
Sea $$$u=2 x$$$.
Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.
Por lo tanto,
$${\color{red}{\int{b^{2 x} d x}}} = {\color{red}{\int{\frac{b^{u}}{2} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = b^{u}$$$:
$${\color{red}{\int{\frac{b^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{b^{u} d u}}{2}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:
$$\frac{{\color{red}{\int{b^{u} d u}}}}{2} = \frac{{\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}}{2}$$
Recordemos que $$$u=2 x$$$:
$$\frac{b^{{\color{red}{u}}}}{2 \ln{\left(b \right)}} = \frac{b^{{\color{red}{\left(2 x\right)}}}}{2 \ln{\left(b \right)}}$$
Por lo tanto,
$$\int{b^{2 x} d x} = \frac{b^{2 x}}{2 \ln{\left(b \right)}}$$
Añade la constante de integración:
$$\int{b^{2 x} d x} = \frac{b^{2 x}}{2 \ln{\left(b \right)}}+C$$
Respuesta
$$$\int b^{2 x}\, dx = \frac{b^{2 x}}{2 \ln\left(b\right)} + C$$$A