Integral de $$$91 - 24 x^{2}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(91 - 24 x^{2}\right)\, dx$$$.
Solución
Integra término a término:
$${\color{red}{\int{\left(91 - 24 x^{2}\right)d x}}} = {\color{red}{\left(\int{91 d x} - \int{24 x^{2} d x}\right)}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=91$$$:
$$- \int{24 x^{2} d x} + {\color{red}{\int{91 d x}}} = - \int{24 x^{2} d x} + {\color{red}{\left(91 x\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=24$$$ y $$$f{\left(x \right)} = x^{2}$$$:
$$91 x - {\color{red}{\int{24 x^{2} d x}}} = 91 x - {\color{red}{\left(24 \int{x^{2} d x}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$91 x - 24 {\color{red}{\int{x^{2} d x}}}=91 x - 24 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=91 x - 24 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Por lo tanto,
$$\int{\left(91 - 24 x^{2}\right)d x} = - 8 x^{3} + 91 x$$
Simplificar:
$$\int{\left(91 - 24 x^{2}\right)d x} = x \left(91 - 8 x^{2}\right)$$
Añade la constante de integración:
$$\int{\left(91 - 24 x^{2}\right)d x} = x \left(91 - 8 x^{2}\right)+C$$
Respuesta
$$$\int \left(91 - 24 x^{2}\right)\, dx = x \left(91 - 8 x^{2}\right) + C$$$A