Integral de $$$81 \cos^{2}{\left(x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$81 \cos^{2}{\left(x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 81 \cos^{2}{\left(x \right)}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=81$$$ y $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$:

$${\color{red}{\int{81 \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\left(81 \int{\cos^{2}{\left(x \right)} d x}\right)}}$$

Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=x$$$:

$$81 {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = 81 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$:

$$81 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = 81 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$

Integra término a término:

$$\frac{81 {\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{2} = \frac{81 {\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\frac{81 \int{\cos{\left(2 x \right)} d x}}{2} + \frac{81 {\color{red}{\int{1 d x}}}}{2} = \frac{81 \int{\cos{\left(2 x \right)} d x}}{2} + \frac{81 {\color{red}{x}}}{2}$$

Sea $$$u=2 x$$$.

Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.

Entonces,

$$\frac{81 x}{2} + \frac{81 {\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{81 x}{2} + \frac{81 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{81 x}{2} + \frac{81 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{81 x}{2} + \frac{81 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{81 x}{2} + \frac{81 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{81 x}{2} + \frac{81 {\color{red}{\sin{\left(u \right)}}}}{4}$$

Recordemos que $$$u=2 x$$$:

$$\frac{81 x}{2} + \frac{81 \sin{\left({\color{red}{u}} \right)}}{4} = \frac{81 x}{2} + \frac{81 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$

Por lo tanto,

$$\int{81 \cos^{2}{\left(x \right)} d x} = \frac{81 x}{2} + \frac{81 \sin{\left(2 x \right)}}{4}$$

Simplificar:

$$\int{81 \cos^{2}{\left(x \right)} d x} = \frac{81 \left(2 x + \sin{\left(2 x \right)}\right)}{4}$$

Añade la constante de integración:

$$\int{81 \cos^{2}{\left(x \right)} d x} = \frac{81 \left(2 x + \sin{\left(2 x \right)}\right)}{4}+C$$

Respuesta

$$$\int 81 \cos^{2}{\left(x \right)}\, dx = \frac{81 \left(2 x + \sin{\left(2 x \right)}\right)}{4} + C$$$A


Please try a new game Rotatly