Integral de $$$6 \cos^{2}{\left(x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$6 \cos^{2}{\left(x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 6 \cos^{2}{\left(x \right)}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=6$$$ y $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$:

$${\color{red}{\int{6 \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\left(6 \int{\cos^{2}{\left(x \right)} d x}\right)}}$$

Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=x$$$:

$$6 {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = 6 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$:

$$6 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = 6 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$

Integra término a término:

$$3 {\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}} = 3 {\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$3 \int{\cos{\left(2 x \right)} d x} + 3 {\color{red}{\int{1 d x}}} = 3 \int{\cos{\left(2 x \right)} d x} + 3 {\color{red}{x}}$$

Sea $$$u=2 x$$$.

Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.

La integral se convierte en

$$3 x + 3 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 3 x + 3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$3 x + 3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 3 x + 3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$3 x + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = 3 x + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{2}$$

Recordemos que $$$u=2 x$$$:

$$3 x + \frac{3 \sin{\left({\color{red}{u}} \right)}}{2} = 3 x + \frac{3 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Por lo tanto,

$$\int{6 \cos^{2}{\left(x \right)} d x} = 3 x + \frac{3 \sin{\left(2 x \right)}}{2}$$

Añade la constante de integración:

$$\int{6 \cos^{2}{\left(x \right)} d x} = 3 x + \frac{3 \sin{\left(2 x \right)}}{2}+C$$

Respuesta

$$$\int 6 \cos^{2}{\left(x \right)}\, dx = \left(3 x + \frac{3 \sin{\left(2 x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly