Integral de $$$6 \cos{\left(3 t \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 6 \cos{\left(3 t \right)}\, dt$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=6$$$ y $$$f{\left(t \right)} = \cos{\left(3 t \right)}$$$:
$${\color{red}{\int{6 \cos{\left(3 t \right)} d t}}} = {\color{red}{\left(6 \int{\cos{\left(3 t \right)} d t}\right)}}$$
Sea $$$u=3 t$$$.
Entonces $$$du=\left(3 t\right)^{\prime }dt = 3 dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = \frac{du}{3}$$$.
La integral puede reescribirse como
$$6 {\color{red}{\int{\cos{\left(3 t \right)} d t}}} = 6 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$6 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}} = 6 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}$$
La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Recordemos que $$$u=3 t$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\left(3 t\right)}} \right)}$$
Por lo tanto,
$$\int{6 \cos{\left(3 t \right)} d t} = 2 \sin{\left(3 t \right)}$$
Añade la constante de integración:
$$\int{6 \cos{\left(3 t \right)} d t} = 2 \sin{\left(3 t \right)}+C$$
Respuesta
$$$\int 6 \cos{\left(3 t \right)}\, dt = 2 \sin{\left(3 t \right)} + C$$$A