Integral de $$$5 e^{5 s} \sin{\left(e^{5 s} \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 5 e^{5 s} \sin{\left(e^{5 s} \right)}\, ds$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(s \right)}\, ds = c \int f{\left(s \right)}\, ds$$$ con $$$c=5$$$ y $$$f{\left(s \right)} = e^{5 s} \sin{\left(e^{5 s} \right)}$$$:
$${\color{red}{\int{5 e^{5 s} \sin{\left(e^{5 s} \right)} d s}}} = {\color{red}{\left(5 \int{e^{5 s} \sin{\left(e^{5 s} \right)} d s}\right)}}$$
Sea $$$u=5 s$$$.
Entonces $$$du=\left(5 s\right)^{\prime }ds = 5 ds$$$ (los pasos pueden verse »), y obtenemos que $$$ds = \frac{du}{5}$$$.
Por lo tanto,
$$5 {\color{red}{\int{e^{5 s} \sin{\left(e^{5 s} \right)} d s}}} = 5 {\color{red}{\int{\frac{e^{u} \sin{\left(e^{u} \right)}}{5} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ y $$$f{\left(u \right)} = e^{u} \sin{\left(e^{u} \right)}$$$:
$$5 {\color{red}{\int{\frac{e^{u} \sin{\left(e^{u} \right)}}{5} d u}}} = 5 {\color{red}{\left(\frac{\int{e^{u} \sin{\left(e^{u} \right)} d u}}{5}\right)}}$$
Sea $$$v=e^{u}$$$.
Entonces $$$dv=\left(e^{u}\right)^{\prime }du = e^{u} du$$$ (los pasos pueden verse »), y obtenemos que $$$e^{u} du = dv$$$.
Entonces,
$${\color{red}{\int{e^{u} \sin{\left(e^{u} \right)} d u}}} = {\color{red}{\int{\sin{\left(v \right)} d v}}}$$
La integral del seno es $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$${\color{red}{\int{\sin{\left(v \right)} d v}}} = {\color{red}{\left(- \cos{\left(v \right)}\right)}}$$
Recordemos que $$$v=e^{u}$$$:
$$- \cos{\left({\color{red}{v}} \right)} = - \cos{\left({\color{red}{e^{u}}} \right)}$$
Recordemos que $$$u=5 s$$$:
$$- \cos{\left(e^{{\color{red}{u}}} \right)} = - \cos{\left(e^{{\color{red}{\left(5 s\right)}}} \right)}$$
Por lo tanto,
$$\int{5 e^{5 s} \sin{\left(e^{5 s} \right)} d s} = - \cos{\left(e^{5 s} \right)}$$
Añade la constante de integración:
$$\int{5 e^{5 s} \sin{\left(e^{5 s} \right)} d s} = - \cos{\left(e^{5 s} \right)}+C$$
Respuesta
$$$\int 5 e^{5 s} \sin{\left(e^{5 s} \right)}\, ds = - \cos{\left(e^{5 s} \right)} + C$$$A