Integral de $$$28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=28 \sin{\left(3 \right)}$$$ y $$$f{\left(x \right)} = x \cos{\left(7 x \right)}$$$:
$${\color{red}{\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(28 \sin{\left(3 \right)} \int{x \cos{\left(7 x \right)} d x}\right)}}$$
Para la integral $$$\int{x \cos{\left(7 x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=x$$$ y $$$\operatorname{dv}=\cos{\left(7 x \right)} dx$$$.
Entonces $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{\cos{\left(7 x \right)} d x}=\frac{\sin{\left(7 x \right)}}{7}$$$ (los pasos pueden verse »).
La integral puede reescribirse como
$$28 \sin{\left(3 \right)} {\color{red}{\int{x \cos{\left(7 x \right)} d x}}}=28 \sin{\left(3 \right)} {\color{red}{\left(x \cdot \frac{\sin{\left(7 x \right)}}{7}-\int{\frac{\sin{\left(7 x \right)}}{7} \cdot 1 d x}\right)}}=28 \sin{\left(3 \right)} {\color{red}{\left(\frac{x \sin{\left(7 x \right)}}{7} - \int{\frac{\sin{\left(7 x \right)}}{7} d x}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{7}$$$ y $$$f{\left(x \right)} = \sin{\left(7 x \right)}$$$:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\int{\frac{\sin{\left(7 x \right)}}{7} d x}}}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\left(\frac{\int{\sin{\left(7 x \right)} d x}}{7}\right)}}\right)$$
Sea $$$u=7 x$$$.
Entonces $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{7}$$$.
Por lo tanto,
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(7 x \right)} d x}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right)$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{7}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{49}\right)$$
Recordemos que $$$u=7 x$$$:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{u}} \right)}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$
Por lo tanto,
$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = 28 \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left(7 x \right)}}{49}\right) \sin{\left(3 \right)}$$
Simplificar:
$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}$$
Añade la constante de integración:
$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}+C$$
Respuesta
$$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7} + C$$$A