Integral de $$$2 \cos{\left(\pi t \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$2 \cos{\left(\pi t \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 2 \cos{\left(\pi t \right)}\, dt$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=2$$$ y $$$f{\left(t \right)} = \cos{\left(\pi t \right)}$$$:

$${\color{red}{\int{2 \cos{\left(\pi t \right)} d t}}} = {\color{red}{\left(2 \int{\cos{\left(\pi t \right)} d t}\right)}}$$

Sea $$$u=\pi t$$$.

Entonces $$$du=\left(\pi t\right)^{\prime }dt = \pi dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = \frac{du}{\pi}$$$.

Entonces,

$$2 {\color{red}{\int{\cos{\left(\pi t \right)} d t}}} = 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{\pi}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi} d u}}} = 2 {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{\pi}}}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{\pi} = \frac{2 {\color{red}{\sin{\left(u \right)}}}}{\pi}$$

Recordemos que $$$u=\pi t$$$:

$$\frac{2 \sin{\left({\color{red}{u}} \right)}}{\pi} = \frac{2 \sin{\left({\color{red}{\pi t}} \right)}}{\pi}$$

Por lo tanto,

$$\int{2 \cos{\left(\pi t \right)} d t} = \frac{2 \sin{\left(\pi t \right)}}{\pi}$$

Añade la constante de integración:

$$\int{2 \cos{\left(\pi t \right)} d t} = \frac{2 \sin{\left(\pi t \right)}}{\pi}+C$$

Respuesta

$$$\int 2 \cos{\left(\pi t \right)}\, dt = \frac{2 \sin{\left(\pi t \right)}}{\pi} + C$$$A


Please try a new game Rotatly