Integral de $$$- 21 y^{58} - 126$$$

La calculadora encontrará la integral/antiderivada de $$$- 21 y^{58} - 126$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(- 21 y^{58} - 126\right)\, dy$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(- 21 y^{58} - 126\right)d y}}} = {\color{red}{\left(- \int{126 d y} - \int{21 y^{58} d y}\right)}}$$

Aplica la regla de la constante $$$\int c\, dy = c y$$$ con $$$c=126$$$:

$$- \int{21 y^{58} d y} - {\color{red}{\int{126 d y}}} = - \int{21 y^{58} d y} - {\color{red}{\left(126 y\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=21$$$ y $$$f{\left(y \right)} = y^{58}$$$:

$$- 126 y - {\color{red}{\int{21 y^{58} d y}}} = - 126 y - {\color{red}{\left(21 \int{y^{58} d y}\right)}}$$

Aplica la regla de la potencia $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=58$$$:

$$- 126 y - 21 {\color{red}{\int{y^{58} d y}}}=- 126 y - 21 {\color{red}{\frac{y^{1 + 58}}{1 + 58}}}=- 126 y - 21 {\color{red}{\left(\frac{y^{59}}{59}\right)}}$$

Por lo tanto,

$$\int{\left(- 21 y^{58} - 126\right)d y} = - \frac{21 y^{59}}{59} - 126 y$$

Simplificar:

$$\int{\left(- 21 y^{58} - 126\right)d y} = \frac{21 y \left(- y^{58} - 354\right)}{59}$$

Añade la constante de integración:

$$\int{\left(- 21 y^{58} - 126\right)d y} = \frac{21 y \left(- y^{58} - 354\right)}{59}+C$$

Respuesta

$$$\int \left(- 21 y^{58} - 126\right)\, dy = \frac{21 y \left(- y^{58} - 354\right)}{59} + C$$$A


Please try a new game Rotatly