Integral de $$$18 x^{2} \ln\left(x\right)$$$

La calculadora encontrará la integral/antiderivada de $$$18 x^{2} \ln\left(x\right)$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 18 x^{2} \ln\left(x\right)\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=18$$$ y $$$f{\left(x \right)} = x^{2} \ln{\left(x \right)}$$$:

$${\color{red}{\int{18 x^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(18 \int{x^{2} \ln{\left(x \right)} d x}\right)}}$$

Para la integral $$$\int{x^{2} \ln{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=\ln{\left(x \right)}$$$ y $$$\operatorname{dv}=x^{2} dx$$$.

Entonces $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (los pasos pueden verse »).

La integral se convierte en

$$18 {\color{red}{\int{x^{2} \ln{\left(x \right)} d x}}}=18 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}=18 {\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = x^{2}$$$:

$$6 x^{3} \ln{\left(x \right)} - 18 {\color{red}{\int{\frac{x^{2}}{3} d x}}} = 6 x^{3} \ln{\left(x \right)} - 18 {\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$6 x^{3} \ln{\left(x \right)} - 6 {\color{red}{\int{x^{2} d x}}}=6 x^{3} \ln{\left(x \right)} - 6 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=6 x^{3} \ln{\left(x \right)} - 6 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Por lo tanto,

$$\int{18 x^{2} \ln{\left(x \right)} d x} = 6 x^{3} \ln{\left(x \right)} - 2 x^{3}$$

Simplificar:

$$\int{18 x^{2} \ln{\left(x \right)} d x} = x^{3} \left(6 \ln{\left(x \right)} - 2\right)$$

Añade la constante de integración:

$$\int{18 x^{2} \ln{\left(x \right)} d x} = x^{3} \left(6 \ln{\left(x \right)} - 2\right)+C$$

Respuesta

$$$\int 18 x^{2} \ln\left(x\right)\, dx = x^{3} \left(6 \ln\left(x\right) - 2\right) + C$$$A


Please try a new game Rotatly