Integral de $$$v^{2} - v$$$

La calculadora encontrará la integral/antiderivada de $$$v^{2} - v$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(v^{2} - v\right)\, dv$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(v^{2} - v\right)d v}}} = {\color{red}{\left(- \int{v d v} + \int{v^{2} d v}\right)}}$$

Aplica la regla de la potencia $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \int{v d v} + {\color{red}{\int{v^{2} d v}}}=- \int{v d v} + {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=- \int{v d v} + {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

Aplica la regla de la potencia $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\frac{v^{3}}{3} - {\color{red}{\int{v d v}}}=\frac{v^{3}}{3} - {\color{red}{\frac{v^{1 + 1}}{1 + 1}}}=\frac{v^{3}}{3} - {\color{red}{\left(\frac{v^{2}}{2}\right)}}$$

Por lo tanto,

$$\int{\left(v^{2} - v\right)d v} = \frac{v^{3}}{3} - \frac{v^{2}}{2}$$

Simplificar:

$$\int{\left(v^{2} - v\right)d v} = \frac{v^{2} \left(2 v - 3\right)}{6}$$

Añade la constante de integración:

$$\int{\left(v^{2} - v\right)d v} = \frac{v^{2} \left(2 v - 3\right)}{6}+C$$

Respuesta

$$$\int \left(v^{2} - v\right)\, dv = \frac{v^{2} \left(2 v - 3\right)}{6} + C$$$A


Please try a new game Rotatly