Integral de $$$x^{- e}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int x^{- e}\, dx$$$.
Solución
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- e$$$:
$${\color{red}{\int{x^{- e} d x}}}={\color{red}{\int{x^{- e} d x}}}={\color{red}{\frac{x^{1 - e}}{1 - e}}}={\color{red}{x^{1 - e} \left(1 - e\right)^{-1}}}={\color{red}{\frac{1}{x^{-1 + e} \left(1 - e\right)}}}$$
Por lo tanto,
$$\int{x^{- e} d x} = \frac{1}{x^{-1 + e} \left(1 - e\right)}$$
Añade la constante de integración:
$$\int{x^{- e} d x} = \frac{1}{x^{-1 + e} \left(1 - e\right)}+C$$
Respuesta
$$$\int x^{- e}\, dx = \frac{1}{x^{-1 + e} \left(1 - e\right)} + C$$$A