Integral de $$$1 - \cot{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(1 - \cot{\left(x \right)}\right)\, dx$$$.
Solución
Integra término a término:
$${\color{red}{\int{\left(1 - \cot{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\cot{\left(x \right)} d x}\right)}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$- \int{\cot{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\cot{\left(x \right)} d x} + {\color{red}{x}}$$
Reescribe la cotangente como $$$\cot\left(x\right)=\frac{\cos\left(x\right)}{\sin\left(x\right)}$$$:
$$x - {\color{red}{\int{\cot{\left(x \right)} d x}}} = x - {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$
Sea $$$u=\sin{\left(x \right)}$$$.
Entonces $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\cos{\left(x \right)} dx = du$$$.
Por lo tanto,
$$x - {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = x - {\color{red}{\int{\frac{1}{u} d u}}}$$
La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x - {\color{red}{\int{\frac{1}{u} d u}}} = x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recordemos que $$$u=\sin{\left(x \right)}$$$:
$$x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x - \ln{\left(\left|{{\color{red}{\sin{\left(x \right)}}}}\right| \right)}$$
Por lo tanto,
$$\int{\left(1 - \cot{\left(x \right)}\right)d x} = x - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}$$
Añade la constante de integración:
$$\int{\left(1 - \cot{\left(x \right)}\right)d x} = x - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}+C$$
Respuesta
$$$\int \left(1 - \cot{\left(x \right)}\right)\, dx = \left(x - \ln\left(\left|{\sin{\left(x \right)}}\right|\right)\right) + C$$$A