Integral de $$$-8 + \frac{1}{x^{3}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(-8 + \frac{1}{x^{3}}\right)\, dx$$$.
Solución
Integra término a término:
$${\color{red}{\int{\left(-8 + \frac{1}{x^{3}}\right)d x}}} = {\color{red}{\left(- \int{8 d x} + \int{\frac{1}{x^{3}} d x}\right)}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=8$$$:
$$\int{\frac{1}{x^{3}} d x} - {\color{red}{\int{8 d x}}} = \int{\frac{1}{x^{3}} d x} - {\color{red}{\left(8 x\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-3$$$:
$$- 8 x + {\color{red}{\int{\frac{1}{x^{3}} d x}}}=- 8 x + {\color{red}{\int{x^{-3} d x}}}=- 8 x + {\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}=- 8 x + {\color{red}{\left(- \frac{x^{-2}}{2}\right)}}=- 8 x + {\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}$$
Por lo tanto,
$$\int{\left(-8 + \frac{1}{x^{3}}\right)d x} = - 8 x - \frac{1}{2 x^{2}}$$
Añade la constante de integración:
$$\int{\left(-8 + \frac{1}{x^{3}}\right)d x} = - 8 x - \frac{1}{2 x^{2}}+C$$
Respuesta
$$$\int \left(-8 + \frac{1}{x^{3}}\right)\, dx = \left(- 8 x - \frac{1}{2 x^{2}}\right) + C$$$A