Integral de $$$\frac{1}{4 - 9 x^{2}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{1}{4 - 9 x^{2}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{4 - 9 x^{2}}\, dx$$$.

Solución

Realizar la descomposición en fracciones parciales (los pasos pueden verse »):

$${\color{red}{\int{\frac{1}{4 - 9 x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{4 \left(3 x + 2\right)} - \frac{1}{4 \left(3 x - 2\right)}\right)d x}}}$$

Integra término a término:

$${\color{red}{\int{\left(\frac{1}{4 \left(3 x + 2\right)} - \frac{1}{4 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{4 \left(3 x - 2\right)} d x} + \int{\frac{1}{4 \left(3 x + 2\right)} d x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$:

$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - {\color{red}{\int{\frac{1}{4 \left(3 x - 2\right)} d x}}} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{3 x - 2} d x}}{4}\right)}}$$

Sea $$$u=3 x - 2$$$.

Entonces $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{3}$$$.

Entonces,

$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{4} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$

Recordemos que $$$u=3 x - 2$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x + 2\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x + 2\right)} d x}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{3 x + 2}$$$:

$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + {\color{red}{\int{\frac{1}{4 \left(3 x + 2\right)} d x}}} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + {\color{red}{\left(\frac{\int{\frac{1}{3 x + 2} d x}}{4}\right)}}$$

Sea $$$u=3 x + 2$$$.

Entonces $$$du=\left(3 x + 2\right)^{\prime }dx = 3 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{3}$$$.

Por lo tanto,

$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 x + 2} d x}}}}{4} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$

Recordemos que $$$u=3 x + 2$$$:

$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{\left(3 x + 2\right)}}}\right| \right)}}{12}$$

Por lo tanto,

$$\int{\frac{1}{4 - 9 x^{2}} d x} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12}$$

Simplificar:

$$\int{\frac{1}{4 - 9 x^{2}} d x} = \frac{- \ln{\left(\left|{3 x - 2}\right| \right)} + \ln{\left(\left|{3 x + 2}\right| \right)}}{12}$$

Añade la constante de integración:

$$\int{\frac{1}{4 - 9 x^{2}} d x} = \frac{- \ln{\left(\left|{3 x - 2}\right| \right)} + \ln{\left(\left|{3 x + 2}\right| \right)}}{12}+C$$

Respuesta

$$$\int \frac{1}{4 - 9 x^{2}}\, dx = \frac{- \ln\left(\left|{3 x - 2}\right|\right) + \ln\left(\left|{3 x + 2}\right|\right)}{12} + C$$$A


Please try a new game Rotatly