Integral de $$$\frac{1}{2 x^{3}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{2 x^{3}}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \frac{1}{x^{3}}$$$:
$${\color{red}{\int{\frac{1}{2 x^{3}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{3}} d x}}{2}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-3$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{3}} d x}}}}{2}=\frac{{\color{red}{\int{x^{-3} d x}}}}{2}=\frac{{\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}}{2}=\frac{{\color{red}{\left(- \frac{x^{-2}}{2}\right)}}}{2}=\frac{{\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}}{2}$$
Por lo tanto,
$$\int{\frac{1}{2 x^{3}} d x} = - \frac{1}{4 x^{2}}$$
Añade la constante de integración:
$$\int{\frac{1}{2 x^{3}} d x} = - \frac{1}{4 x^{2}}+C$$
Respuesta
$$$\int \frac{1}{2 x^{3}}\, dx = - \frac{1}{4 x^{2}} + C$$$A