Integral de $$$\frac{1}{\left(3 - 5 x\right)^{2}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{\left(3 - 5 x\right)^{2}}\, dx$$$.
Solución
Sea $$$u=3 - 5 x$$$.
Entonces $$$du=\left(3 - 5 x\right)^{\prime }dx = - 5 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - \frac{du}{5}$$$.
La integral se convierte en
$${\color{red}{\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{5 u^{2}}\right)d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{5}$$$ y $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$${\color{red}{\int{\left(- \frac{1}{5 u^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u^{2}} d u}}{5}\right)}}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{5}=- \frac{{\color{red}{\int{u^{-2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{5}=- \frac{{\color{red}{\left(- u^{-1}\right)}}}{5}=- \frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{5}$$
Recordemos que $$$u=3 - 5 x$$$:
$$\frac{{\color{red}{u}}^{-1}}{5} = \frac{{\color{red}{\left(3 - 5 x\right)}}^{-1}}{5}$$
Por lo tanto,
$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = \frac{1}{5 \left(3 - 5 x\right)}$$
Simplificar:
$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = - \frac{1}{25 x - 15}$$
Añade la constante de integración:
$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = - \frac{1}{25 x - 15}+C$$
Respuesta
$$$\int \frac{1}{\left(3 - 5 x\right)^{2}}\, dx = - \frac{1}{25 x - 15} + C$$$A