Integral de $$$- x^{6} - x^{3} - 111 i x^{3}$$$

La calculadora encontrará la integral/antiderivada de $$$- x^{6} - x^{3} - 111 i x^{3}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(- x^{6} - x^{3} - 111 i x^{3}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x} - \int{x^{6} d x} - \int{111 i x^{3} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=3$$$:

$$- \int{x^{6} d x} - \int{111 i x^{3} d x} - {\color{red}{\int{x^{3} d x}}}=- \int{x^{6} d x} - \int{111 i x^{3} d x} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \int{x^{6} d x} - \int{111 i x^{3} d x} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=6$$$:

$$- \frac{x^{4}}{4} - \int{111 i x^{3} d x} - {\color{red}{\int{x^{6} d x}}}=- \frac{x^{4}}{4} - \int{111 i x^{3} d x} - {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- \frac{x^{4}}{4} - \int{111 i x^{3} d x} - {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=111 i$$$ y $$$f{\left(x \right)} = x^{3}$$$:

$$- \frac{x^{7}}{7} - \frac{x^{4}}{4} - {\color{red}{\int{111 i x^{3} d x}}} = - \frac{x^{7}}{7} - \frac{x^{4}}{4} - {\color{red}{\left(111 i \int{x^{3} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=3$$$:

$$- \frac{x^{7}}{7} - \frac{x^{4}}{4} - 111 i {\color{red}{\int{x^{3} d x}}}=- \frac{x^{7}}{7} - \frac{x^{4}}{4} - 111 i {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{x^{7}}{7} - \frac{x^{4}}{4} - 111 i {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Por lo tanto,

$$\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x} = - \frac{x^{7}}{7} - \frac{x^{4}}{4} - \frac{111 i x^{4}}{4}$$

Simplificar:

$$\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x} = \frac{x^{4} \left(- 4 x^{3} - 7 - 777 i\right)}{28}$$

Añade la constante de integración:

$$\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x} = \frac{x^{4} \left(- 4 x^{3} - 7 - 777 i\right)}{28}+C$$

Respuesta

$$$\int \left(- x^{6} - x^{3} - 111 i x^{3}\right)\, dx = \frac{x^{4} \left(- 4 x^{3} - 7 - 777 i\right)}{28} + C$$$A


Please try a new game Rotatly