Integral de $$$9 \sqrt{2} t^{16}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 9 \sqrt{2} t^{16}\, dt$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=9 \sqrt{2}$$$ y $$$f{\left(t \right)} = t^{16}$$$:
$${\color{red}{\int{9 \sqrt{2} t^{16} d t}}} = {\color{red}{\left(9 \sqrt{2} \int{t^{16} d t}\right)}}$$
Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=16$$$:
$$9 \sqrt{2} {\color{red}{\int{t^{16} d t}}}=9 \sqrt{2} {\color{red}{\frac{t^{1 + 16}}{1 + 16}}}=9 \sqrt{2} {\color{red}{\left(\frac{t^{17}}{17}\right)}}$$
Por lo tanto,
$$\int{9 \sqrt{2} t^{16} d t} = \frac{9 \sqrt{2} t^{17}}{17}$$
Añade la constante de integración:
$$\int{9 \sqrt{2} t^{16} d t} = \frac{9 \sqrt{2} t^{17}}{17}+C$$
Respuesta
$$$\int 9 \sqrt{2} t^{16}\, dt = \frac{9 \sqrt{2} t^{17}}{17} + C$$$A