Integral de $$$\frac{1}{- a^{2} + x^{2}}$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$\frac{1}{- a^{2} + x^{2}}$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{- a^{2} + x^{2}}\, dx$$$.

Solución

Realizar la descomposición en fracciones parciales:

$${\color{red}{\int{\frac{1}{- a^{2} + x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} + \frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|}\right)d x}}}$$

Integra término a término:

$${\color{red}{\int{\left(- \frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} + \frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|} d x} - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2 \left|{a}\right|}$$$ y $$$f{\left(x \right)} = \frac{1}{- a + x}$$$:

$$- \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + {\color{red}{\int{\frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|} d x}}} = - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + {\color{red}{\left(\frac{\int{\frac{1}{- a + x} d x}}{2 \left|{a}\right|}\right)}}$$

Sea $$$u=- a + x$$$.

Entonces $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.

La integral puede reescribirse como

$$- \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\int{\frac{1}{- a + x} d x}}}}{2 \left|{a}\right|} = - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|} = - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 \left|{a}\right|}$$

Recordemos que $$$u=- a + x$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 \left|{a}\right|} - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} = \frac{\ln{\left(\left|{{\color{red}{\left(- a + x\right)}}}\right| \right)}}{2 \left|{a}\right|} - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2 \left|{a}\right|}$$$ y $$$f{\left(x \right)} = \frac{1}{a + x}$$$:

$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - {\color{red}{\int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x}}} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - {\color{red}{\left(\frac{\int{\frac{1}{a + x} d x}}{2 \left|{a}\right|}\right)}}$$

Sea $$$u=a + x$$$.

Entonces $$$du=\left(a + x\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.

La integral puede reescribirse como

$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\int{\frac{1}{a + x} d x}}}}{2 \left|{a}\right|} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 \left|{a}\right|}$$

Recordemos que $$$u=a + x$$$:

$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 \left|{a}\right|} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{\ln{\left(\left|{{\color{red}{\left(a + x\right)}}}\right| \right)}}{2 \left|{a}\right|}$$

Por lo tanto,

$$\int{\frac{1}{- a^{2} + x^{2}} d x} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 \left|{a}\right|}$$

Simplificar:

$$\int{\frac{1}{- a^{2} + x^{2}} d x} = \frac{\ln{\left(\left|{a - x}\right| \right)} - \ln{\left(\left|{a + x}\right| \right)}}{2 \left|{a}\right|}$$

Añade la constante de integración:

$$\int{\frac{1}{- a^{2} + x^{2}} d x} = \frac{\ln{\left(\left|{a - x}\right| \right)} - \ln{\left(\left|{a + x}\right| \right)}}{2 \left|{a}\right|}+C$$

Respuesta

$$$\int \frac{1}{- a^{2} + x^{2}}\, dx = \frac{\ln\left(\left|{a - x}\right|\right) - \ln\left(\left|{a + x}\right|\right)}{2 \left|{a}\right|} + C$$$A


Please try a new game Rotatly