Integral de $$$\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=8$$$ y $$$f{\left(x \right)} = \frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(8 \int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}\right)}}$$
Sea $$$u=\operatorname{acos}{\left(x \right)}$$$.
Entonces $$$du=\left(\operatorname{acos}{\left(x \right)}\right)^{\prime }dx = - \frac{1}{\sqrt{1 - x^{2}}} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{\sqrt{1 - x^{2}}} = - du$$$.
Por lo tanto,
$$8 {\color{red}{\int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = 8 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = e^{u}$$$:
$$8 {\color{red}{\int{\left(- e^{u}\right)d u}}} = 8 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:
$$- 8 {\color{red}{\int{e^{u} d u}}} = - 8 {\color{red}{e^{u}}}$$
Recordemos que $$$u=\operatorname{acos}{\left(x \right)}$$$:
$$- 8 e^{{\color{red}{u}}} = - 8 e^{{\color{red}{\operatorname{acos}{\left(x \right)}}}}$$
Por lo tanto,
$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}$$
Añade la constante de integración:
$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}+C$$
Respuesta
$$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx = - 8 e^{\operatorname{acos}{\left(x \right)}} + C$$$A