Integral de $$$\sqrt{x} \left(x^{2} - \frac{2}{x}\right)$$$

La calculadora encontrará la integral/antiderivada de $$$\sqrt{x} \left(x^{2} - \frac{2}{x}\right)$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sqrt{x} \left(x^{2} - \frac{2}{x}\right)\, dx$$$.

Solución

Expand the expression:

$${\color{red}{\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x}}} = {\color{red}{\int{\left(x^{\frac{5}{2}} - \frac{2}{\sqrt{x}}\right)d x}}}$$

Integra término a término:

$${\color{red}{\int{\left(x^{\frac{5}{2}} - \frac{2}{\sqrt{x}}\right)d x}}} = {\color{red}{\left(- \int{\frac{2}{\sqrt{x}} d x} + \int{x^{\frac{5}{2}} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{5}{2}$$$:

$$- \int{\frac{2}{\sqrt{x}} d x} + {\color{red}{\int{x^{\frac{5}{2}} d x}}}=- \int{\frac{2}{\sqrt{x}} d x} + {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=- \int{\frac{2}{\sqrt{x}} d x} + {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:

$$\frac{2 x^{\frac{7}{2}}}{7} - {\color{red}{\int{\frac{2}{\sqrt{x}} d x}}} = \frac{2 x^{\frac{7}{2}}}{7} - {\color{red}{\left(2 \int{\frac{1}{\sqrt{x}} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- \frac{1}{2}$$$:

$$\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\int{x^{- \frac{1}{2}} d x}}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\left(2 \sqrt{x}\right)}}$$

Por lo tanto,

$$\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x} = \frac{2 x^{\frac{7}{2}}}{7} - 4 \sqrt{x}$$

Simplificar:

$$\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x} = \frac{2 \sqrt{x} \left(x^{3} - 14\right)}{7}$$

Añade la constante de integración:

$$\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x} = \frac{2 \sqrt{x} \left(x^{3} - 14\right)}{7}+C$$

Respuesta

$$$\int \sqrt{x} \left(x^{2} - \frac{2}{x}\right)\, dx = \frac{2 \sqrt{x} \left(x^{3} - 14\right)}{7} + C$$$A


Please try a new game Rotatly