Integral de $$$\frac{x^{2} + 2 x + 1}{x^{2}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{x^{2} + 2 x + 1}{x^{2}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{x^{2} + 2 x + 1}{x^{2}}\, dx$$$.

Solución

Expand the expression:

$${\color{red}{\int{\frac{x^{2} + 2 x + 1}{x^{2}} d x}}} = {\color{red}{\int{\left(1 + \frac{2}{x} + \frac{1}{x^{2}}\right)d x}}}$$

Integra término a término:

$${\color{red}{\int{\left(1 + \frac{2}{x} + \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{2}} d x} + \int{\frac{2}{x} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{\frac{1}{x^{2}} d x} + \int{\frac{2}{x} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{1}{x^{2}} d x} + \int{\frac{2}{x} d x} + {\color{red}{x}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:

$$x + \int{\frac{2}{x} d x} + {\color{red}{\int{\frac{1}{x^{2}} d x}}}=x + \int{\frac{2}{x} d x} + {\color{red}{\int{x^{-2} d x}}}=x + \int{\frac{2}{x} d x} + {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=x + \int{\frac{2}{x} d x} + {\color{red}{\left(- x^{-1}\right)}}=x + \int{\frac{2}{x} d x} + {\color{red}{\left(- \frac{1}{x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$x + {\color{red}{\int{\frac{2}{x} d x}}} - \frac{1}{x} = x + {\color{red}{\left(2 \int{\frac{1}{x} d x}\right)}} - \frac{1}{x}$$

La integral de $$$\frac{1}{x}$$$ es $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$x + 2 {\color{red}{\int{\frac{1}{x} d x}}} - \frac{1}{x} = x + 2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}} - \frac{1}{x}$$

Por lo tanto,

$$\int{\frac{x^{2} + 2 x + 1}{x^{2}} d x} = x + 2 \ln{\left(\left|{x}\right| \right)} - \frac{1}{x}$$

Añade la constante de integración:

$$\int{\frac{x^{2} + 2 x + 1}{x^{2}} d x} = x + 2 \ln{\left(\left|{x}\right| \right)} - \frac{1}{x}+C$$

Respuesta

$$$\int \frac{x^{2} + 2 x + 1}{x^{2}}\, dx = \left(x + 2 \ln\left(\left|{x}\right|\right) - \frac{1}{x}\right) + C$$$A


Please try a new game Rotatly