Integral de $$$x + \frac{1}{x^{2}}$$$

La calculadora encontrará la integral/antiderivada de $$$x + \frac{1}{x^{2}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(x + \frac{1}{x^{2}}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(x + \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x^{2}} d x} + \int{x d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\int{\frac{1}{x^{2}} d x} + {\color{red}{\int{x d x}}}=\int{\frac{1}{x^{2}} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\frac{1}{x^{2}} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:

$$\frac{x^{2}}{2} + {\color{red}{\int{\frac{1}{x^{2}} d x}}}=\frac{x^{2}}{2} + {\color{red}{\int{x^{-2} d x}}}=\frac{x^{2}}{2} + {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=\frac{x^{2}}{2} + {\color{red}{\left(- x^{-1}\right)}}=\frac{x^{2}}{2} + {\color{red}{\left(- \frac{1}{x}\right)}}$$

Por lo tanto,

$$\int{\left(x + \frac{1}{x^{2}}\right)d x} = \frac{x^{2}}{2} - \frac{1}{x}$$

Simplificar:

$$\int{\left(x + \frac{1}{x^{2}}\right)d x} = \frac{x^{3} - 2}{2 x}$$

Añade la constante de integración:

$$\int{\left(x + \frac{1}{x^{2}}\right)d x} = \frac{x^{3} - 2}{2 x}+C$$

Respuesta

$$$\int \left(x + \frac{1}{x^{2}}\right)\, dx = \frac{x^{3} - 2}{2 x} + C$$$A


Please try a new game Rotatly