Integral de $$$1679616 x^{41}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 1679616 x^{41}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=1679616$$$ y $$$f{\left(x \right)} = x^{41}$$$:
$${\color{red}{\int{1679616 x^{41} d x}}} = {\color{red}{\left(1679616 \int{x^{41} d x}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=41$$$:
$$1679616 {\color{red}{\int{x^{41} d x}}}=1679616 {\color{red}{\frac{x^{1 + 41}}{1 + 41}}}=1679616 {\color{red}{\left(\frac{x^{42}}{42}\right)}}$$
Por lo tanto,
$$\int{1679616 x^{41} d x} = \frac{279936 x^{42}}{7}$$
Añade la constante de integración:
$$\int{1679616 x^{41} d x} = \frac{279936 x^{42}}{7}+C$$
Respuesta
$$$\int 1679616 x^{41}\, dx = \frac{279936 x^{42}}{7} + C$$$A