Integral de $$$\operatorname{sech}^{2}{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \operatorname{sech}^{2}{\left(x \right)}\, dx$$$.
Solución
La integral de $$$\operatorname{sech}^{2}{\left(x \right)}$$$ es $$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}$$$:
$${\color{red}{\int{\operatorname{sech}^{2}{\left(x \right)} d x}}} = {\color{red}{\tanh{\left(x \right)}}}$$
Por lo tanto,
$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}$$
Añade la constante de integración:
$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}+C$$
Respuesta
$$$\int \operatorname{sech}^{2}{\left(x \right)}\, dx = \tanh{\left(x \right)} + C$$$A