Integral de $$$\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}\, dx$$$.
Solución
Simplificar el integrando:
$${\color{red}{\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{1 d x}}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$${\color{red}{\int{1 d x}}} = {\color{red}{x}}$$
Por lo tanto,
$$\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x} = x$$
Añade la constante de integración:
$$\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x} = x+C$$
Respuesta
$$$\int \frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}\, dx = x + C$$$A