Integral de $$$\frac{51 n}{100}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{51 n}{100}\, dn$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ con $$$c=\frac{51}{100}$$$ y $$$f{\left(n \right)} = n$$$:
$${\color{red}{\int{\frac{51 n}{100} d n}}} = {\color{red}{\left(\frac{51 \int{n d n}}{100}\right)}}$$
Aplica la regla de la potencia $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\frac{51 {\color{red}{\int{n d n}}}}{100}=\frac{51 {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}}{100}=\frac{51 {\color{red}{\left(\frac{n^{2}}{2}\right)}}}{100}$$
Por lo tanto,
$$\int{\frac{51 n}{100} d n} = \frac{51 n^{2}}{200}$$
Añade la constante de integración:
$$\int{\frac{51 n}{100} d n} = \frac{51 n^{2}}{200}+C$$
Respuesta
$$$\int \frac{51 n}{100}\, dn = \frac{51 n^{2}}{200} + C$$$A