Integral de $$$- x + \left(e^{x} - 1\right) e^{- x}$$$

La calculadora encontrará la integral/antiderivada de $$$- x + \left(e^{x} - 1\right) e^{- x}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(- x + \left(e^{x} - 1\right) e^{- x}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\left(e^{x} - 1\right) e^{- x} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\int{x d x}}}=\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Expand the expression:

$$- \frac{x^{2}}{2} + {\color{red}{\int{\left(e^{x} - 1\right) e^{- x} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\int{\left(1 - e^{- x}\right)d x}}}$$

Integra término a término:

$$- \frac{x^{2}}{2} + {\color{red}{\int{\left(1 - e^{- x}\right)d x}}} = - \frac{x^{2}}{2} + {\color{red}{\left(\int{1 d x} - \int{e^{- x} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$- \frac{x^{2}}{2} - \int{e^{- x} d x} + {\color{red}{\int{1 d x}}} = - \frac{x^{2}}{2} - \int{e^{- x} d x} + {\color{red}{x}}$$

Sea $$$u=- x$$$.

Entonces $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - du$$$.

La integral puede reescribirse como

$$- \frac{x^{2}}{2} + x - {\color{red}{\int{e^{- x} d x}}} = - \frac{x^{2}}{2} + x - {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = e^{u}$$$:

$$- \frac{x^{2}}{2} + x - {\color{red}{\int{\left(- e^{u}\right)d u}}} = - \frac{x^{2}}{2} + x - {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{x^{2}}{2} + x + {\color{red}{\int{e^{u} d u}}} = - \frac{x^{2}}{2} + x + {\color{red}{e^{u}}}$$

Recordemos que $$$u=- x$$$:

$$- \frac{x^{2}}{2} + x + e^{{\color{red}{u}}} = - \frac{x^{2}}{2} + x + e^{{\color{red}{\left(- x\right)}}}$$

Por lo tanto,

$$\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x} = - \frac{x^{2}}{2} + x + e^{- x}$$

Añade la constante de integración:

$$\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x} = - \frac{x^{2}}{2} + x + e^{- x}+C$$

Respuesta

$$$\int \left(- x + \left(e^{x} - 1\right) e^{- x}\right)\, dx = \left(- \frac{x^{2}}{2} + x + e^{- x}\right) + C$$$A


Please try a new game Rotatly