Integral de $$$\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)\, dx$$$.
Solución
Integra término a término:
$${\color{red}{\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x}}} = {\color{red}{\left(\int{\left(9 - x^{2}\right)^{2} d x} - \int{\left(x + 7\right)^{2} d x}\right)}}$$
Expand the expression:
$$- \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(9 - x^{2}\right)^{2} d x}}} = - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(x^{4} - 18 x^{2} + 81\right)d x}}}$$
Integra término a término:
$$- \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(x^{4} - 18 x^{2} + 81\right)d x}}} = - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(\int{81 d x} - \int{18 x^{2} d x} + \int{x^{4} d x}\right)}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=81$$$:
$$- \int{18 x^{2} d x} + \int{x^{4} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{81 d x}}} = - \int{18 x^{2} d x} + \int{x^{4} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(81 x\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=4$$$:
$$81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{x^{4} d x}}}=81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=18$$$ y $$$f{\left(x \right)} = x^{2}$$$:
$$\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - {\color{red}{\int{18 x^{2} d x}}} = \frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - {\color{red}{\left(18 \int{x^{2} d x}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\int{x^{2} d x}}}=\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Sea $$$u=x + 7$$$.
Entonces $$$du=\left(x + 7\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.
Por lo tanto,
$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{\left(x + 7\right)^{2} d x}}} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{u^{2} d u}}}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{u^{2} d u}}}=\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recordemos que $$$u=x + 7$$$:
$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{{\color{red}{u}}^{3}}{3} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{{\color{red}{\left(x + 7\right)}}^{3}}{3}$$
Por lo tanto,
$$\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}$$
Añade la constante de integración:
$$\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}+C$$
Respuesta
$$$\int \left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)\, dx = \left(\frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}\right) + C$$$A