Integral de $$$\frac{1}{2 \left(4 - x^{2}\right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{1}{2 \left(4 - x^{2}\right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{2 \left(4 - x^{2}\right)}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \frac{1}{4 - x^{2}}$$$:

$${\color{red}{\int{\frac{1}{2 \left(4 - x^{2}\right)} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{4 - x^{2}} d x}}{2}\right)}}$$

Realizar la descomposición en fracciones parciales (los pasos pueden verse »):

$$\frac{{\color{red}{\int{\frac{1}{4 - x^{2}} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{4 \left(x + 2\right)} - \frac{1}{4 \left(x - 2\right)}\right)d x}}}}{2}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(\frac{1}{4 \left(x + 2\right)} - \frac{1}{4 \left(x - 2\right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{4 \left(x - 2\right)} d x} + \int{\frac{1}{4 \left(x + 2\right)} d x}\right)}}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:

$$\frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{4 \left(x - 2\right)} d x}}}}{2} = \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{x - 2} d x}}{4}\right)}}}{2}$$

Sea $$$u=x - 2$$$.

Entonces $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.

Por lo tanto,

$$\frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{x - 2} d x}}}}{8} = \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Recordemos que $$$u=x - 2$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{8} + \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{x + 2}$$$:

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{4 \left(x + 2\right)} d x}}}}{2} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{x + 2} d x}}{4}\right)}}}{2}$$

Sea $$$u=x + 2$$$.

Entonces $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.

Entonces,

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{x + 2} d x}}}}{8} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Recordemos que $$$u=x + 2$$$:

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{\left(x + 2\right)}}}\right| \right)}}{8}$$

Por lo tanto,

$$\int{\frac{1}{2 \left(4 - x^{2}\right)} d x} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{\ln{\left(\left|{x + 2}\right| \right)}}{8}$$

Simplificar:

$$\int{\frac{1}{2 \left(4 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x + 2}\right| \right)}}{8}$$

Añade la constante de integración:

$$\int{\frac{1}{2 \left(4 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x + 2}\right| \right)}}{8}+C$$

Respuesta

$$$\int \frac{1}{2 \left(4 - x^{2}\right)}\, dx = \frac{- \ln\left(\left|{x - 2}\right|\right) + \ln\left(\left|{x + 2}\right|\right)}{8} + C$$$A


Please try a new game Rotatly