Integral de $$$\left(3 x - 4\right)^{5}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(3 x - 4\right)^{5}\, dx$$$.
Solución
Sea $$$u=3 x - 4$$$.
Entonces $$$du=\left(3 x - 4\right)^{\prime }dx = 3 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{3}$$$.
Por lo tanto,
$${\color{red}{\int{\left(3 x - 4\right)^{5} d x}}} = {\color{red}{\int{\frac{u^{5}}{3} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(u \right)} = u^{5}$$$:
$${\color{red}{\int{\frac{u^{5}}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{5} d u}}{3}\right)}}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:
$$\frac{{\color{red}{\int{u^{5} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 5}}{1 + 5}}}}{3}=\frac{{\color{red}{\left(\frac{u^{6}}{6}\right)}}}{3}$$
Recordemos que $$$u=3 x - 4$$$:
$$\frac{{\color{red}{u}}^{6}}{18} = \frac{{\color{red}{\left(3 x - 4\right)}}^{6}}{18}$$
Por lo tanto,
$$\int{\left(3 x - 4\right)^{5} d x} = \frac{\left(3 x - 4\right)^{6}}{18}$$
Añade la constante de integración:
$$\int{\left(3 x - 4\right)^{5} d x} = \frac{\left(3 x - 4\right)^{6}}{18}+C$$
Respuesta
$$$\int \left(3 x - 4\right)^{5}\, dx = \frac{\left(3 x - 4\right)^{6}}{18} + C$$$A