Integral de $$$\frac{2 v}{v - 1}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{2 v}{v - 1}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{2 v}{v - 1}\, dv$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=2$$$ y $$$f{\left(v \right)} = \frac{v}{v - 1}$$$:

$${\color{red}{\int{\frac{2 v}{v - 1} d v}}} = {\color{red}{\left(2 \int{\frac{v}{v - 1} d v}\right)}}$$

Reescribe y separa la fracción:

$$2 {\color{red}{\int{\frac{v}{v - 1} d v}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{v - 1}\right)d v}}}$$

Integra término a término:

$$2 {\color{red}{\int{\left(1 + \frac{1}{v - 1}\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{\frac{1}{v - 1} d v}\right)}}$$

Aplica la regla de la constante $$$\int c\, dv = c v$$$ con $$$c=1$$$:

$$2 \int{\frac{1}{v - 1} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{\frac{1}{v - 1} d v} + 2 {\color{red}{v}}$$

Sea $$$u=v - 1$$$.

Entonces $$$du=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (los pasos pueden verse »), y obtenemos que $$$dv = du$$$.

La integral se convierte en

$$2 v + 2 {\color{red}{\int{\frac{1}{v - 1} d v}}} = 2 v + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 v + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 v + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recordemos que $$$u=v - 1$$$:

$$2 v + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 v + 2 \ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}$$

Por lo tanto,

$$\int{\frac{2 v}{v - 1} d v} = 2 v + 2 \ln{\left(\left|{v - 1}\right| \right)}$$

Simplificar:

$$\int{\frac{2 v}{v - 1} d v} = 2 \left(v + \ln{\left(\left|{v - 1}\right| \right)}\right)$$

Añade la constante de integración:

$$\int{\frac{2 v}{v - 1} d v} = 2 \left(v + \ln{\left(\left|{v - 1}\right| \right)}\right)+C$$

Respuesta

$$$\int \frac{2 v}{v - 1}\, dv = 2 \left(v + \ln\left(\left|{v - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly