Integral de $$$\frac{1}{p \left(1 - \frac{p}{n}\right)}$$$ con respecto a $$$n$$$

La calculadora encontrará la integral/primitiva de $$$\frac{1}{p \left(1 - \frac{p}{n}\right)}$$$ con respecto a $$$n$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ con $$$c=\frac{1}{p}$$$ y $$$f{\left(n \right)} = \frac{1}{1 - \frac{p}{n}}$$$:

$${\color{red}{\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n}}} = {\color{red}{\frac{\int{\frac{1}{1 - \frac{p}{n}} d n}}{p}}}$$

Simplify:

$$\frac{{\color{red}{\int{\frac{1}{1 - \frac{p}{n}} d n}}}}{p} = \frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p}$$

Reescribe y separa la fracción:

$$\frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p} = \frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p} = \frac{{\color{red}{\left(\int{1 d n} + \int{\frac{p}{n - p} d n}\right)}}}{p}$$

Aplica la regla de la constante $$$\int c\, dn = c n$$$ con $$$c=1$$$:

$$\frac{\int{\frac{p}{n - p} d n} + {\color{red}{\int{1 d n}}}}{p} = \frac{\int{\frac{p}{n - p} d n} + {\color{red}{n}}}{p}$$

Aplica la regla del factor constante $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ con $$$c=p$$$ y $$$f{\left(n \right)} = \frac{1}{n - p}$$$:

$$\frac{n + {\color{red}{\int{\frac{p}{n - p} d n}}}}{p} = \frac{n + {\color{red}{p \int{\frac{1}{n - p} d n}}}}{p}$$

Sea $$$u=n - p$$$.

Entonces $$$du=\left(n - p\right)^{\prime }dn = 1 dn$$$ (los pasos pueden verse »), y obtenemos que $$$dn = du$$$.

Entonces,

$$\frac{n + p {\color{red}{\int{\frac{1}{n - p} d n}}}}{p} = \frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p} = \frac{n + p {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{p}$$

Recordemos que $$$u=n - p$$$:

$$\frac{n + p \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{p} = \frac{n + p \ln{\left(\left|{{\color{red}{\left(n - p\right)}}}\right| \right)}}{p}$$

Por lo tanto,

$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n + p \ln{\left(\left|{n - p}\right| \right)}}{p}$$

Simplificar:

$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}$$

Añade la constante de integración:

$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}+C$$

Respuesta

$$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn = \left(\frac{n}{p} + \ln\left(\left|{n - p}\right|\right)\right) + C$$$A


Please try a new game Rotatly