Integral de $$$\left(20 - 5 x\right)^{2}$$$

La calculadora encontrará la integral/antiderivada de $$$\left(20 - 5 x\right)^{2}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(20 - 5 x\right)^{2}\, dx$$$.

Solución

Sea $$$u=20 - 5 x$$$.

Entonces $$$du=\left(20 - 5 x\right)^{\prime }dx = - 5 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - \frac{du}{5}$$$.

Por lo tanto,

$${\color{red}{\int{\left(20 - 5 x\right)^{2} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{5}$$$ y $$$f{\left(u \right)} = u^{2}$$$:

$${\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} d u}}{5}\right)}}$$

Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \frac{{\color{red}{\int{u^{2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{5}=- \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{5}$$

Recordemos que $$$u=20 - 5 x$$$:

$$- \frac{{\color{red}{u}}^{3}}{15} = - \frac{{\color{red}{\left(20 - 5 x\right)}}^{3}}{15}$$

Por lo tanto,

$$\int{\left(20 - 5 x\right)^{2} d x} = - \frac{\left(20 - 5 x\right)^{3}}{15}$$

Simplificar:

$$\int{\left(20 - 5 x\right)^{2} d x} = \frac{25 \left(x - 4\right)^{3}}{3}$$

Añade la constante de integración:

$$\int{\left(20 - 5 x\right)^{2} d x} = \frac{25 \left(x - 4\right)^{3}}{3}+C$$

Respuesta

$$$\int \left(20 - 5 x\right)^{2}\, dx = \frac{25 \left(x - 4\right)^{3}}{3} + C$$$A


Please try a new game Rotatly