Integral de $$$\frac{\ln^{12}\left(x\right)}{x}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\ln^{12}\left(x\right)}{x}\, dx$$$.
Solución
Sea $$$u=\ln{\left(x \right)}$$$.
Entonces $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{x} = du$$$.
Por lo tanto,
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{12}}{x} d x}}} = {\color{red}{\int{u^{12} d u}}}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=12$$$:
$${\color{red}{\int{u^{12} d u}}}={\color{red}{\frac{u^{1 + 12}}{1 + 12}}}={\color{red}{\left(\frac{u^{13}}{13}\right)}}$$
Recordemos que $$$u=\ln{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{13}}{13} = \frac{{\color{red}{\ln{\left(x \right)}}}^{13}}{13}$$
Por lo tanto,
$$\int{\frac{\ln{\left(x \right)}^{12}}{x} d x} = \frac{\ln{\left(x \right)}^{13}}{13}$$
Añade la constante de integración:
$$\int{\frac{\ln{\left(x \right)}^{12}}{x} d x} = \frac{\ln{\left(x \right)}^{13}}{13}+C$$
Respuesta
$$$\int \frac{\ln^{12}\left(x\right)}{x}\, dx = \frac{\ln^{13}\left(x\right)}{13} + C$$$A