Integral de $$$\frac{1}{x \ln^{2}\left(x\right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{x \ln^{2}\left(x\right)}\, dx$$$.
Solución
Sea $$$u=\ln{\left(x \right)}$$$.
Entonces $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{x} = du$$$.
Por lo tanto,
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{2}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
Recordemos que $$$u=\ln{\left(x \right)}$$$:
$$- {\color{red}{u}}^{-1} = - {\color{red}{\ln{\left(x \right)}}}^{-1}$$
Por lo tanto,
$$\int{\frac{1}{x \ln{\left(x \right)}^{2}} d x} = - \frac{1}{\ln{\left(x \right)}}$$
Añade la constante de integración:
$$\int{\frac{1}{x \ln{\left(x \right)}^{2}} d x} = - \frac{1}{\ln{\left(x \right)}}+C$$
Respuesta
$$$\int \frac{1}{x \ln^{2}\left(x\right)}\, dx = - \frac{1}{\ln\left(x\right)} + C$$$A