Integral de $$$\frac{m}{d f}$$$ con respecto a $$$d$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{m}{d f}\, dd$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(d \right)}\, dd = c \int f{\left(d \right)}\, dd$$$ con $$$c=\frac{m}{f}$$$ y $$$f{\left(d \right)} = \frac{1}{d}$$$:
$${\color{red}{\int{\frac{m}{d f} d d}}} = {\color{red}{\frac{m \int{\frac{1}{d} d d}}{f}}}$$
La integral de $$$\frac{1}{d}$$$ es $$$\int{\frac{1}{d} d d} = \ln{\left(\left|{d}\right| \right)}$$$:
$$\frac{m {\color{red}{\int{\frac{1}{d} d d}}}}{f} = \frac{m {\color{red}{\ln{\left(\left|{d}\right| \right)}}}}{f}$$
Por lo tanto,
$$\int{\frac{m}{d f} d d} = \frac{m \ln{\left(\left|{d}\right| \right)}}{f}$$
Añade la constante de integración:
$$\int{\frac{m}{d f} d d} = \frac{m \ln{\left(\left|{d}\right| \right)}}{f}+C$$
Respuesta
$$$\int \frac{m}{d f}\, dd = \frac{m \ln\left(\left|{d}\right|\right)}{f} + C$$$A