Integral de $$$\frac{2 - x}{1 - x}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{2 - x}{1 - x}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{2 - x}{1 - x}\, dx$$$.

Solución

Sea $$$u=1 - x$$$.

Entonces $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - du$$$.

La integral se convierte en

$${\color{red}{\int{\frac{2 - x}{1 - x} d x}}} = {\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = \frac{u + 1}{u}$$$:

$${\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{u + 1}{u} d u}\right)}}$$

Expand the expression:

$$- {\color{red}{\int{\frac{u + 1}{u} d u}}} = - {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}}$$

Integra término a término:

$$- {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}} = - {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u} d u}\right)}}$$

Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$- \int{\frac{1}{u} d u} - {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u} d u} - {\color{red}{u}}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- u - {\color{red}{\int{\frac{1}{u} d u}}} = - u - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recordemos que $$$u=1 - x$$$:

$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = - \ln{\left(\left|{{\color{red}{\left(1 - x\right)}}}\right| \right)} - {\color{red}{\left(1 - x\right)}}$$

Por lo tanto,

$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)} - 1$$

Añadir la constante de integración (y eliminar la constante de la expresión):

$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)}+C$$

Respuesta

$$$\int \frac{2 - x}{1 - x}\, dx = \left(x - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly